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choice of reference system, are described. It is demonstrated how
the MFP-axis formulation introducessingularities in the EOM. The
singularities are identi� ed, and the effect of their removal is shown
in a numerical application. The conclusion is that the body-axis
formulation generally leads to a more accurate solution.

As part of the current investigation, equations were derived for
the steady-state limits of common motion variables. These limits
are not affected by the various modeling techniquesdiscussed here.
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Extending Slender Wing Theory
to Not So Slender Wings
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Nomenclature
AR = aspect ratio
a.c. = aerodynamic center
b = wing span
b.x/ = local wing span
CDi = induced drag coef� cient
CL = lift coef� cient
CL® = lift-curve slope
Cl.x/ = local lift coef� cient
Cm l:e: = wing apex pitching moment coef� cient
Cr = root chord
CT = leading-edge thrust coef� cient
Kv = vortex lift constant
L = lift
m.x/ = local apparent mass
S = wing area
U = freestream velocity
x , y = Cartesian coordinate
xcl = location of wing’s center of lift
® = angle of attack
®i = induced angle of attack
" = wing apex half angle
3 = wing leading-edge sweep angle
½ = density
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Introduction

T HE delta wing con� guration has been extensively studied
as a con� guration that represents a realistic compromise be-

tween high-speed ef� ciency and low-speed maneuverability. The
widespread adoption of this con� guration in the late 1940s and
1950s promulgated the development of theoretical methods capa-
ble of predicting the behavior of these wings. Non-numerical ef-
forts to predict the attached � ow lift included slender wing theory
(SWT)1;2 and the method of Lawrence.3 SWT was further devel-
oped by Lomax and Sluder4 to account for the trailing-edge Kutta
condition and compressibility. The resulting expressions compare
reasonably with experiment4 but are somewhat cumbersome, lack-
ing the simplicity and ease of computation inherent in the original
formulation.Similar observationscanbe made regardingthemethod
of Lawrence.3

SWT1;2 yields simple expressions to predict the lift, drag, and
pitching moment coef� cient of slender delta wings with fully at-
tached leading-edge � ow. However, the simpli� cations inherent in
SWT limit its utility for wings with aspect ratios generally greater
then 0.5, due to preclusionof trailing-edgeeffects. It is assumed that
the chordwisevelocitygradientsare negligiblesuch that the govern-
ing linearized partial differential equation transforms to Laplace’s
equation in a cross� ow plane. Wing properties are evaluated in
this cross � owplane that is assumed representative for all cross-
� ow planes. As the wing extends to in� nity chordwise, each cross-
� ow plane is essentially a Trefftz plane. SWT predicts an elliptic
spanwise load distribution. As chordwise effects are neglected in
this methodology, the results are applicable for incompressibleand
compressible � ow. The primary results from SWT are summarized
as follows:

CL® D .¼=2/AR; CDi D C2
L

¯
¼AR D .¼=4/AR®2

a:c:=Cr D 2
3
; Cm l:e: D ¡¼AR®=3

The simplicity of these equations makes them attractive for prelim-
inary design use, as well as for educational purposes, as they can
readily be committed to memory. However, their poor accuracy for
the majority of practical delta wing con� gurations limits their util-
ity. It would be useful for these applicationsto have similarly simple
expressions that are applicable to a wider range of delta wings. In
this Note, SWT is extended to include trailing-edgeeffects. Result-
ing expressionsare comparedwith numericaland experimentaldata
for validation.

Methodology
In the following analysis, it is assumed that the delta wings are

planar and that their leading-edge � ow is fully attached (100%
leading-edge suction). The � uid is also assumed incompressible.
Jones’1 presentation of SWT relates the lift per unit chord of the
wing to the rate of increase of the apparent mass of the � uid in a
� xed axial cross� ow plane as its penetrated by the wing. As the
wing penetrates the plane, the scale of the � ow increases, requiring
a lift force equal to the downward velocity multiplied by the local
increase of the additional apparent mass.1 At any cross� ow plane,
the apparent mass of the � uid is given by

m.x/ D ½¼b.x/2=4 (1)

Equation (1) represents the apparent mass for a falling � at plate,
showing that the local � uid entrained consists of a cylinder with a
diameter equal to that of the local wingspan. Consequently, m.x/
increases parabolically toward the trailing edge of the wing. The
lift per unit chord is related to the apparent mass by [noting that
b.x/ D 2x tan."/]

dL

dx
D U 2®

dm.x/

dx
D U 2®½¼

2b.x/

4
db.x/

dx
D U 2®½2¼x tan ."/2

(2)

As such, the rateof changeof theapparentmass and, hence, local lift
varies linearly with chordwise distance. Equation (2) implies that if
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the wing span is no longer increasing,for example,the tip sectionsof
a cropped delta wing, the local lift is zero. From a vorticityperspec-
tive, this implies that at this location no spanwise vortex � laments
exist; all � laments are streamwise and parallel to the freestream.

Mathematical simulation of a wing’s trailing edge is achieved
through imposition of the Kutta condition, inferring that the differ-
ential loading across the trailing edge is zero. The form of Eq. (2)
suggests that a Kutta-type condition may be imposed by requiring
that dm.x/=dx (and so the local loading)tends to zero as the trailing
edge is approached. This would physically imply that the presence
of the trailing edge is indicatedby the wing no longer increasingthe
scale of the � ow as it penetrates the � xed cross� ow plane, which
is analogous to stating that all vortex � laments are streamwise. A
modi� cation to the form of dm.x/=dx as presented in Eq. (2) may
be assumed to be of the form

dm.x/

dx
D ½¼

b.x/

2

db.x/

dx

µ
1 ¡

x

Cr
sin."/

¶
(3)

Independently, the correction for trailing-edge effects [1 ¡ x=
Cr sin."/] represents a linear reduction in the rate of change of
the apparent mass with the chord. Sweep dependence requires the
incorporation of a function that eliminates trailing-edgeeffects for
an in� nite slenderwing, that is, as " ! 0 deg. A suitable function is
a sinusoidal variation with " as shown in Ref. 5, where the location
of the wing’s aerodynamiccenter (a.c.) is shown to be dependenton
sin."/. With the inclusion of sweep dependence, Eq. (3) no longer
explicitlysatis� es theKutta conditionat the wing’s trailingedge(ex-
cept for " D 90 deg). A more complicated expression satisfying this
conditionwould not be within the spirit of simplicity of the original
theory, such that simple � nal relations would not result. However,
Eq. (3) facilitates excellent predictions of loads and coef� cients.

The local wingspan of a delta wing is given by

b.x/ D 2x tan."/ (4)

Substitution of Eq. (4) into Eq. (3) and evaluation yields

dm.x/

dx
D 2½¼ tan."/2

µ
x ¡

x2

Cr
sin."/

¶
(5)

The lift coef� cient per unit length may be found by substitution of
Eq. (5) into the de� nition for dL=dx as presented by Eq. (2). Non-
dimensionalizingby the freestreamdynamicpressureand localwing
span yields [where AR D 4 tan."/]

Cl.x/ D [2¼ tan."/®=x][x ¡ .x2=Cr/ sin."/]

D .¼AR®=2x/[x ¡ .x2=Cr/ sin."/] (6)

and the chordwise loading is given by

Cl.x/.x=Cr/ D 2¼ tan."/®[x=Cr ¡ .x2=Cr 2/ sin."/]

D .¼AR®=2/[x=Cr ¡ .x2=Cr 2/ sin."/] (7)

Although not included due to space limitations, comparison of
Eq. (7) with the experimental data of Kirkpatrick6 and a vortex
lattice panel method7 showed good agreement. The total lift of the
wing follows as

L D
Z Cr

0

dL

dx
dx D

Z Cr

0

U 2®
dm.x/

dx
dx (8)

Substitution of Eq. (5) into Eq. (8) gives

L D 2½¼ tan."/2®U 2Cr 2
©

1
2

¡ [sin."/=3]
ª

(9)

The lift coef� cient follows, using S D Cr 2 tan."/ for a delta wing

CL D L
¯

1
2 ½U 2 S D 4¼ tan."/®

©
1
2

¡ [sin."/=3]
ª

b)

a)

Fig. 1 Comparisons of predicted wing lift-curve slope a) with experi-
mental data and b) with numerical and theoretical data.

which with AR D 4 tan."/ gives

CL D .¼AR®=2/f1 ¡ [2 sin."/=3]g (10)

CL® D .¼AR=2/f1 ¡ [2 sin."/=3]g (11)

CL may also be determined using Eq. (6) in concert with

CL D 2 tan."/

S

Z Cr

0

xCl .x/ dx

Equation (11) reduces to the slender wing result as " ! 0 deg. Fi-
nite wing effects are indicated through the [1 ¡ 2 sin."/=3] term.
Predictions using Eq. (11) with experimental data8;9 are presented
in Fig. 1a. The experimentaldata of Wentz and Kohlman9 are widely
used as a baseline for computationalcode validationand as such are
regardedas representative.The presentation in Fig. 1a shows excel-
lent agreementbetween the experimentaldata8;9 and the predictions
of Eq. (11).

Comparisons of Eq. (11) with computational and theoretical
results for the lift-curve slope of thin delta wings are presented
in Fig. 1b. The computational results were determined using the
Lamar–Gloss7 panel method. These, and all subsequent panel
method data are denoted by solid circles to aid differentiationfrom
the present predictions. Also indicated in Fig. 1b is a prediction
using an approximation for CL® derived using a Sychev similarity
parameter (see Ref. 10), which is given by

CL® D 4 tan."/0:8 D AR= tan."/0:2 (12)

Data from the method of Lomax and Sluder4 are also included.
Figure 1b shows that the current expression [Eq. (11)] yields ex-
cellent agreement with the numerical results, as does Eq. (12) for
a more limited AR range. Equation (11) shows far better accuracy
for high AR.>2/ deltas then Eq. (12) and, as shown, provides pre-
dictions generally within 1% of the computational results for any
likely practical delta wing of interest, a signi� cant result given the
simplicity of Eq. (11).
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For slender wings, Jones1 has shown that the attached � ow span-
wise loading is elliptical, a result also seen in numerical results.
Thus, the inviscid drag for a planar delta wing with attached � ow
may be estimated as:

CDi D C2
L

¯
¼AR D .¼=4/AR®2

£
1 ¡ 2

3 sin."/
¤2

(13)

Under the assumptionof elliptic loading, the inducedangleof attack
is readily determined as

®i D CL =¼AR (14)

which on substitution of Eq. (10) yields

®i D .®=2/
¡
1 ¡ 2

3 sin."/
¢

(15)

As " ! 0 deg, Eq. (15) reduces to the classical result indicating that
the resultant inviscid loading is inclined rearward at half the wing’s
geometric angle of attack. The location of the wing’s center of lift
may be found as follows:

Lxcl D
Z Cr

0

dL

dx
x dx (16)

Substitution of Eq. (2) and Eq. (5) into Eq. (16) and integration
yields

xcl=Cr D
£

1
3

¡ 1
4 sin."/

¤¯£
1
2

¡ 1
3 sin."/

¤
(17)

As " ! 0 deg, Eq. (17) gives the slender wing result, that is
xcl=Cr D 2

3 . As the wing is assumed to be thin and planar, Eq. (17)
also correspondsto the locationof the wing’s a.c. Figure 2a presents
comparisonsof Eq. (17) with experimental data, the panel method,
and an approximation given in Ref. 5. The data show good agree-
ment, but indicate that the location of the wing’s a.c. is predicted
to be too far aft. This is a consequenceof incomplete enforcement
of the Kutta condition, resulting in excessive rear loading over the

b)

a)

Fig. 2 a) Predicted a.c. location compared to numerical and experi-
mental data and b) Predicted apex pitching moment compared to nu-
merical and experimental data.

wing. The pitching moment about the wing’s apex is also readily
determined as

Cm l:e: D ¡CL .x=Cr/ D ¡¼AR®
£

1
3

¡ 1
4 sin."/

¤
(18)

Figure 2b presentspredictionsof Cm l:e: using Eq. (18) with numer-
ical and experimental data. The predictions show close accord with
the numerical computationsand experimental results.However, the
moment is slightly larger than indicated by the panel method, once
again re� ecting the somewhat overestimated aft loading.

When fully attached � ow and low ® are assumed, the wing’s
leading-edgethrust (or inviscid axial force) may be estimated as

CT D CL sin.®/ ¡ CDi cos.®/ ¼ CL® ¡ CDi (19)

Substitution of Eqs. (10) and (13) yields

CT D CL ®
£

1
2
C 1

3 sin."/
¤

D .¼=2/AR®2
£
1¡ 2

3 sin."/
¤£

1
2
C 1

3 sin."/
¤

(20)
In the limiting case as " ! 0 deg, Eq. (20) reduces to

CT" ! 0 D .¼=4/AR®2 (21)

a result also indicated by SWT, which shows that the thrust is equal
and opposite to the drag. Figure 3 presents CT =®2 as a function
of AR. Equation (20) and numerical data are shown. The predictions
show excellentaccord with the panelmethoddata,with only a small
deviationat high AR, which is indicative that the spanwise loading is
starting to deviate from elliptic. The close accord indicates that the
extendedSWT will closely estimate the performance(lift, drag, and
pitching moment) of planar delta wings with attached leading-edge
� ow.

Also included in the presentation is the function CT =®2 cos.3/.
This expression can be interpreted as approximating Polhamus’11

vortex lift constant Kv. Predictions of Kv using the Lamar–Gloss7

panel method are shown, as are results from evaluationof the func-
tion. Agreement is seen to be excellent for AR < 4.

Many slender delta wings are designed with sharp leading edges
such thattheycanbene� t from lift augmentationdue to the formation
of conical leading-edgevortices.An accuratemethod to estimate the
performance of this class of wings was devised by Polhamus11 in
the 1960s, his “leading-edge suction analogy.” His methodology

Fig. 3 Predicted leading-edge thrust coef� cient compared to numeri-
cal data.
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indicates that the lift produced by a thin, planar sharp-edged delta
wing is closely approximated by

CL D CL® cos.®/2 sin.®/ C Kv cos.®/ sin.®/2 (22)

where the � rst termon the right representstheattached� ow potential
lift with zero leading-edge suction and the second term the vortex
induced lift. Equation (22) generally shows excellent agreement
with experimentaldata forAR < 2. As indicated,byuseof thepresent
methodology, Kv may be approximated as (Fig. 3)

Kv ¼ ¼AR
2 sin."/

µ
1 ¡ 2

3
sin."/

¶µ
1
2

C 1
3

sin."/

¶
(23)

Thus, the present method [Eqs. (11) and (23)] in combination with
Polhamus’11 analogy may also be used to estimate the lift and drag
[DCL tan.®/] of planar sharp-edged delta wings.

If the delta wing has a pro� led section, the present results, in
combination with the method presented in Ref. 12, may be used to
estimate the lift and drag decompositiondue to partial leading-edge
� ow separation.

Conclusions
A method is presented to extend the results from slender wing

theory to delta wings of high aspect ratio. This incompressible
technique is applicable to planar delta wings with fully attached
leading-edge � ows. A correction to account for the � nite chord of
the wing is incorporated into the rate of change of the local addi-
tional apparent mass. This expression contains a correction to ac-
countfor the impactofwing sweep. Following themethodof Jones,1

simple expressions for the chordwise loading, lift, and coef� cients
including wing lift, induced drag, pitching moment, leading-edge
thrust, as well as the a.c. location, are derived.Comparisonsof these
expressions with numerical and experimental data show excellent
agreement.
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Simple Engineering Model for
Delta-Wing Vortex Breakdown
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Introduction

T HE leading-edge vortex � ow structures generated by combat
aircraft at high angles of attack continue to be the subject of

much theoretical and experimental research. One aspect of these
� ows of particular concern is the onset of large-scale instabilities
in the vortex (referred to as “burst” or “breakdown”) because this
impacts directly (and adversely) on aircraft performance, stability,
and controllability.A wide range of theoreticalmechanisms for this
breakdownhave been proposed,1 all fundamentallybased on stabil-
ity analyses of an axisymmetric vortex. A common feature of all of
these approaches is the emergence of the swirl ratio as the primary
factor governing the onset of vortex breakdown. Further, despite
the different assumptions made, the critical values obtained for the
swirl ratio are remarkably similar (of the order of one) and agree
reasonably well with experiment (e.g., Ref. 2). However, these the-
oretical analyses all fail to give any signi� cant information about
the structureof the vortexdownstreamof breakdown;unfortunately,
it is just this aspect of the phenomenon that governs its impact on
aircraft aerodynamic characteristics.Recent advances in computa-
tional � uid dynamics have led to the capability to reproducehelical
vortex breakdown structures for delta-wing � ows3; however, these
computations are time consuming and expensive. This Note there-
forepresentssomepreliminaryresultsfromanalternative“engineer-
ing” analysis based on a very simple � ow model, an analysis that
gives quantitative predictions for the helical burst structure which
compare well with experimental data.

Model Approach
The analysis builds on two main (but largely empirical) observa-

tions: 1) the structure of a burst delta-wing vortex is fundamentally
helical,4;5 and 2) during the transition from straight unburst vortex
to helical burst vortex individualelements of the vortex core are ini-
tially de� ected directly away from the vortex centerlineand acquire
no additional rotational velocity component.4;6

The burst process is then modelled as four stages, as illustratedin
Fig. 1. Upstream of burst there is a semi-in� nite straight vortex, fol-
lowed by a decelerationstage ahead of the burst onset proper. In the
region of the burst onset, there is a highly three-dimensionaltransi-
tion stage, leading into a semi-in� nite helical vortex downstreamof
the burst region.This preliminaryanalysisdoes not address the com-
plex � ow physics of the initial burst development,but instead looks
at the overall transformation from a columnar vortex (upstream) to
a semi-in� nite helical vortex (downstream). In some respects this is
a similar approach to that adopted in Ref. 5; the critical difference
being that in Ref. 5 the helical vortex geometry (i.e., orientation,
pitch, and radius) was determined solely on the basis of experimen-
tal data.

For a right-handed helical vortex � lament of strength 0 with
viscous core radius ¾ , helix radius a0, and pitch p. D 2¼k/, the
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