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choice of reference system, are described. It is demonstrated how
the MFP-axis formulationintroduces singularitiesin the EOM. The
singularities are identified, and the effect of their removal is shown
in a numerical application. The conclusion is that the body-axis
formulation generally leads to a more accurate solution.

As part of the current investigation, equations were derived for
the steady-state limits of common motion variables. These limits
are not affected by the various modeling techniques discussed here.
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Extending Slender Wing Theory
to Not So Slender Wings

Lance W. Traub*
Texas A&M University,
College Station, Texas 77843-3141

Nomenclature
AR = aspectratio
a.c. = aerodynamic center
b = wing span
b(x) = local wing span
Chpi = induced drag coefficient
Cp = lift coefficient
C;, = lift-curveslope
C;(x) = locallift coefficient
Cm,,. = wing apex pitching moment coefficient
Cr = root chord
Cr = leading-edge thrust coefficient
Kv = vortex lift constant
L = lift
m(x) = local apparent mass
S = wing area
U = freestream velocity
x,y = Cartesian coordinate
X = location of wing’s center of lift
o = angle of attack
o; = induced angle of attack
£ = wing apex half angle
A = wing leading-edge sweep angle
0 = density
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Introduction

HE delta wing configuration has been extensively studied

as a configuration that represents a realistic compromise be-
tween high-speed efficiency and low-speed maneuverability. The
widespread adoption of this configuration in the late 1940s and
1950s promulgated the development of theoretical methods capa-
ble of predicting the behavior of these wings. Non-numerical ef-
forts to predict the attached flow lift included slender wing theory
(SWT)"? and the method of Lawrence.> SWT was further devel-
oped by Lomax and Sluder* to account for the trailing-edge Kutta
condition and compressibility. The resulting expressions compare
reasonably with experiment* but are somewhat cumbersome, lack-
ing the simplicity and ease of computation inherent in the original
formulation.Similar observationscan be made regardingthe method
of Lawrence.?

SWT!? yields simple expressions to predict the lift, drag, and
pitching moment coefficient of slender delta wings with fully at-
tached leading-edge flow. However, the simplifications inherent in
SWT limit its utility for wings with aspect ratios generally greater
then 0.5, due to preclusionof trailing-edgeeffects. It is assumed that
the chordwise velocity gradients are negligible such that the govern-
ing linearized partial differential equation transforms to Laplace’s
equation in a crossflow plane. Wing properties are evaluated in
this cross flowplane that is assumed representative for all cross-
flow planes. As the wing extends to infinity chordwise, each cross-
flow plane is essentially a Trefftz plane. SWT predicts an elliptic
spanwise load distribution. As chordwise effects are neglected in
this methodology, the results are applicable for incompressible and
compressible flow. The primary results from SWT are summarized
as follows:

Cro = (T/2)AR, Cp; = C? [1 R = (1/4) AR

a.c./Cr = %, Cmy, =—nnMRa/3

The simplicity of these equations makes them attractive for prelim-
inary design use, as well as for educational purposes, as they can
readily be committed to memory. However, their poor accuracy for
the majority of practical delta wing configurations limits their util-
ity. It would be useful for these applicationsto have similarly simple
expressions that are applicable to a wider range of delta wings. In
this Note, SWT is extended to include trailing-edge effects. Result-
ing expressionsare compared with numerical and experimentaldata
for validation.

Methodology

In the following analysis, it is assumed that the delta wings are
planar and that their leading-edge flow is fully attached (100%
leading-edge suction). The fluid is also assumed incompressible.
Jones’! presentation of SWT relates the lift per unit chord of the
wing to the rate of increase of the apparent mass of the fluid in a
fixed axial crossflow plane as its penetrated by the wing. As the
wing penetrates the plane, the scale of the flow increases, requiring
a lift force equal to the downward velocity multiplied by the local
increase of the additional apparent mass.! At any crossflow plane,
the apparent mass of the fluid is given by

m(x) = pmb(x)?/4 (D

Equation (1) represents the apparent mass for a falling flat plate,
showing that the local fluid entrained consists of a cylinder with a
diameter equal to that of the local wingspan. Consequently, m (x)
increases parabolically toward the trailing edge of the wing. The
lift per unit chord is related to the apparent mass by [noting that
b(x) =2x tan(g)]

% — U dm(x) — Ulapn 2b(x) db(x)

dx dx 4 dx

= Uza,o2nx tan (g)?
(2)

As such, the rate of change of the apparentmass and, hence, local lift
varies linearly with chordwise distance. Equation (2) implies that if
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the wing spanis no longerincreasing,for example, the tip sectionsof
a cropped delta wing, the local lift is zero. From a vorticity perspec-
tive, this implies that at this location no spanwise vortex filaments
exist; all filaments are streamwise and parallel to the freestream.

Mathematical simulation of a wing’s trailing edge is achieved
through imposition of the Kutta condition, inferring that the differ-
ential loading across the trailing edge is zero. The form of Eq. (2)
suggests that a Kutta-type condition may be imposed by requiring
thatdm (x)/dx (and so the local loading) tends to zero as the trailing
edge is approached. This would physically imply that the presence
of the trailingedge is indicated by the wing no longer increasing the
scale of the flow as it penetrates the fixed crossflow plane, which
is analogous to stating that all vortex filaments are streamwise. A
modification to the form of dm(x)/dx as presented in Eq. (2) may
be assumed to be of the form

dm(x) Mdb(x} X
“ax T2 Tax [1 Cr Sm(a)} 3)

Independently, the correction for trailing-edge effects [1 —x/
Cr sin(e)] represents a linear reduction in the rate of change of
the apparent mass with the chord. Sweep dependence requires the
incorporation of a function that eliminates trailing-edge effects for
an infinite slender wing, thatis, as ¢ — 0 deg. A suitable functionis
a sinusoidal variation with & as shown in Ref. 5, where the location
of the wing’s aerodynamic center (a.c.) is shown to be dependenton
sin(¢). With the inclusion of sweep dependence, Eq. (3) no longer
explicitly satisfies the Kutta conditionat the wing’s trailing edge (ex-
cept for e =90 deg). A more complicated expression satisfying this
condition would not be within the spirit of simplicity of the original
theory, such that simple final relations would not result. However,
Eq. (3) facilitates excellent predictions of loads and coefficients.
The local wingspan of a delta wing is given by

b(x) = 2x tan(e) “)
Substitution of Eq. (4) into Eq. (3) and evaluation yields

M =207t 2l x — x_z i 5
e pr tan(e)”| x cr sin(e) ®))

The lift coefficient per unit length may be found by substitution of
Eq. (5) into the definition for dL/dx as presented by Eq. (2). Non-
dimensionalizingby the freestreamdynamic pressureand local wing
span yields [where AR =4 tan(e)]

C;(x) = [27 tan(e)a /x][x — (x*/Cr) sin(e)]

= (AR /2x)[x — (xz/Cr) sin(g)] (6)
and the chordwise loading is given by
Cy(x)(x/Cr) = 27 tan(e)a[x/Cr — (x*/Cr?) sin(e)]

= (mMRa/2)[x/Cr — (x*/Cr?)sin(e)] 7
Although not included due to space limitations, comparison of
Eq. (7) with the experimental data of Kirkpatrick® and a vortex

lattice panel method’ showed good agreement. The total lift of the
wing follows as

4L L dm(x)
L= —dx = Ula—— dx (8)
0 dx

dx ;
Substitution of Eq. (5) into Eq. (8) gives
L = 2pm tan(e)*aU*Cr*{ L — [sin(e) /31} ©))
The lift coefficient follows, using S = Cr? tan(e) for a delta wing

C, = L/LpUS = 4x tan(e)a{L — [sin(e)/31}
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Fig. 1 Comparisons of predicted wing lift-curve slope a) with experi-
mental data and b) with numerical and theoretical data.

which with AR =4 tan(e) gives
C, = (AR /2){1 — [2sin(e)/3]} (10)
Cro = (TAR/2){1 — [2sin(e)/3]} (11)

C; may also be determined using Eq. (6) in concert with

2t Cr
c, = 2ane / xC,(x) dx
S 0

Equation (11) reduces to the slender wing result as € — 0 deg. Fi-
nite wing effects are indicated through the [1 — 2 sin(g)/3] term.
Predictions using Eq. (11) with experimental data®’ are presented
inFig. 1a. The experimental data of Wentz and Kohlman® are widely
used as a baseline for computational code validationand as such are
regarded as representative. The presentationin Fig. 1a shows excel-
lent agreementbetween the experimentaldata®® and the predictions
of Eq. (11).

Comparisons of Eq. (11) with computational and theoretical
results for the lift-curve slope of thin delta wings are presented
in Fig. 1b. The computational results were determined using the
Lamar-Gloss’ panel method. These, and all subsequent panel
method data are denoted by solid circles to aid differentiation from
the present predictions. Also indicated in Fig. 1b is a prediction
using an approximation for C;, derived using a Sychev similarity
parameter (see Ref. 10), which is given by

Cpo = 4tan(e)"® = AR/ tan(e)"? (12)

Data from the method of Lomax and Sluder* are also included.
Figure 1b shows that the current expression [Eq. (11)] yields ex-
cellent agreement with the numerical results, as does Eq. (12) for
a more limited AR range. Equation (11) shows far better accuracy
for high AR(>2) deltas then Eq. (12) and, as shown, provides pre-
dictions generally within 1% of the computational results for any
likely practical delta wing of interest, a significant result given the
simplicity of Eq. (11).
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For slender wings, Jones! has shown that the attached flow span-
wise loading is elliptical, a result also seen in numerical results.
Thus, the inviscid drag for a planar delta wing with attached flow
may be estimated as:

Cpi =C? [aR = (n/H)AR?[1 — 2 sin(s)]2 (13)

Under the assumptionof ellipticloading, the induced angle of attack
is readily determined as

o = CL /7TAR (14)
which on substitution of Eq. (10) yields

o = (oe/2)(1 = sin(s)) (15)

As ¢ — 0deg, Eq. (15) reduces to the classical resultindicating that
the resultantinviscid loading is inclined rearward at half the wing’s
geometric angle of attack. The location of the wing’s center of lift
may be found as follows:

Cr dL
Lxy = —xdx (16)
o d

X

Substitution of Eq. (2) and Eq. (5) into Eq. (16) and integration
yields

xa/Cr = [+ = Lsin(e)]/[4 — L sin(e)] (17)

As ¢ —0 deg, Eq. (17) gives the slender wing result, that is
xq/Cr= % As the wing is assumed to be thin and planar, Eq. (17)
also correspondsto the location of the wing’s a.c. Figure 2a presents
comparisons of Eq. (17) with experimental data, the panel method,
and an approximation given in Ref. 5. The data show good agree-
ment, but indicate that the location of the wing’s a.c. is predicted
to be too far aft. This is a consequence of incomplete enforcement
of the Kutta condition, resulting in excessive rear loading over the
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Fig. 2 a) Predicted a.c. location compared to numerical and experi-
mental data and b) Predicted apex pitching moment compared to nu-
merical and experimental data.

wing. The pitching moment about the wing’s apex is also readily
determined as

Cmye. = —Cp(x/Cr) = —nRa[t — Lsine)]  (18)

Figure 2b presents predictions of Cm, . using Eq. (18) with numer-
ical and experimental data. The predictions show close accord with
the numerical computations and experimentalresults. However, the
moment is slightly larger than indicated by the panel method, once
again reflecting the somewhat overestimated aft loading.

When fully attached flow and low « are assumed, the wing’s
leading-edgethrust (or inviscid axial force) may be estimated as

Cr = C sin(e) — Cp,; cos(a) ~ Cra — Cp; (19)
Substitution of Egs. (10) and (13) yields

Cr = Cra[t+1sin(e)] = (7/2)ARa*[1-2sin(e) |[£+1 sin(e) ]

(20)
In the limiting case as ¢ — 0 deg, Eq. (20) reduces to

Cr, ., = (m/9Ra’ (21)

aresultalso indicated by SWT, which shows that the thrustis equal
and opposite to the drag. Figure 3 presents Cy/a? as a function
of AR. Equation (20) and numerical data are shown. The predictions
show excellentaccord with the panel method data, with only a small
deviationat high AR, whichis indicative that the spanwise loading is
starting to deviate from elliptic. The close accord indicates that the
extended SWT will closely estimate the performance (lift, drag, and
pitching moment) of planar delta wings with attached leading-edge
flow.

Also included in the presentationis the function Cy /a® cos(A).
This expression can be interpreted as approximating Polhamus’!!
vortex lift constant Kv. Predictions of Kv using the Lamar—Gloss’
panel method are shown, as are results from evaluation of the func-
tion. Agreementis seen to be excellent for AR < 4.

Many slender delta wings are designed with sharp leading edges
suchthatthey canbenefit fromliftaugmentationdue to the formation
of conicalleading-edgevortices. An accuratemethod to estimate the
performance of this class of wings was devised by Polhamus!! in
the 1960s, his “leading-edge suction analogy.” His methodology
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Fig. 3 Predicted leading-edge thrust coefficient compared to numeri-
cal data.
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indicates that the lift produced by a thin, planar sharp-edged delta
wing is closely approximated by

C, = C,, cos(a)?sin() + Kv cos(a) sin(e)? (22)

where the first term on the rightrepresentsthe attached flow potential
lift with zero leading-edge suction and the second term the vortex
induced lift. Equation (22) generally shows excellent agreement
with experimentaldatafor AR < 2. Asindicated,by useof the present
methodology, Kv may be approximated as (Fig. 3)

N2 S P TRUN | EE ”
VR T sine) 3 sin(g) > t3 sin(g) (23)

Thus, the present method [Eqs. (11) and (23)] in combination with
Polhamus’!! analogy may also be used to estimate the lift and drag
[=C| tan(«)] of planar sharp-edged delta wings.

If the delta wing has a profiled section, the present results, in
combination with the method presented in Ref. 12, may be used to
estimate the lift and drag decompositiondue to partial leading-edge
flow separation.

Conclusions

A method is presented to extend the results from slender wing
theory to delta wings of high aspect ratio. This incompressible
technique is applicable to planar delta wings with fully attached
leading-edge flows. A correction to account for the finite chord of
the wing is incorporated into the rate of change of the local addi-
tional apparent mass. This expression contains a correction to ac-
countfor theimpactof wing sweep. Following the method of Jones,'!
simple expressions for the chordwise loading, lift, and coefficients
including wing lift, induced drag, pitching moment, leading-edge
thrust, as well as the a.c. location, are derived. Comparisons of these
expressions with numerical and experimental data show excellent
agreement.
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Simple Engineering Model for
Delta-Wing Vortex Breakdown

D. I. Greenwell*
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Bristol, England BS8 ITR, United Kingdom

Introduction

HE leading-edge vortex flow structures generated by combat

aircraft at high angles of attack continue to be the subject of
much theoretical and experimental research. One aspect of these
flows of particular concern is the onset of large-scale instabilities
in the vortex (referred to as “burst” or “breakdown’) because this
impacts directly (and adversely) on aircraft performance, stability,
and controllability. A wide range of theoretical mechanisms for this
breakdownhave been proposed,! all fundamentally based on stabil-
ity analyses of an axisymmetric vortex. A common feature of all of
these approachesis the emergence of the swirl ratio as the primary
factor governing the onset of vortex breakdown. Further, despite
the different assumptions made, the critical values obtained for the
swirl ratio are remarkably similar (of the order of one) and agree
reasonably well with experiment (e.g., Ref. 2). However, these the-
oretical analyses all fail to give any significant information about
the structure of the vortex downstream of breakdown; unfortunately,
it is just this aspect of the phenomenon that governs its impact on
aircraft aerodynamic characteristics. Recent advances in computa-
tional fluid dynamics have led to the capability to reproduce helical
vortex breakdown structures for delta-wing flows?; however, these
computations are time consuming and expensive. This Note there-
fore presentssome preliminaryresults from an alternative “engineer-
ing” analysis based on a very simple flow model, an analysis that
gives quantitative predictions for the helical burst structure which
compare well with experimental data.

Model Approach

The analysis builds on two main (but largely empirical) observa-
tions: 1) the structure of a burst delta-wing vortex is fundamentally
helical** and 2) during the transition from straight unburst vortex
to helical burst vortex individual elements of the vortex core are ini-
tially deflected directly away from the vortex centerline and acquire
no additional rotational velocity component*®

The burst process is then modelled as four stages, as illustrated in
Fig. 1. Upstream of burst there is a semi-infinite straight vortex, fol-
lowed by a decelerationstage ahead of the burst onset proper. In the
region of the burst onset, there is a highly three-dimensionaltransi-
tion stage, leading into a semi-infinite helical vortex downstream of
the burstregion. This preliminary analysis does not address the com-
plex flow physics of the initial burst development, but instead looks
at the overall transformation from a columnar vortex (upstream) to
a semi-infinite helical vortex (downstream). In some respects this is
a similar approach to that adopted in Ref. 5; the critical difference
being that in Ref. 5 the helical vortex geometry (i.e., orientation,
pitch, and radius) was determined solely on the basis of experimen-
tal data.

For a right-handed helical vortex filament of strength I' with
viscous core radius o, helix radius ay, and pitch p(=2nk), the

Received 17 June 2002; revision received 16 October 2002; accepted
for publication 18 October 2002. Copyright © 2002 by D. I. Greenwell.
Published by the American Institute of Aeronautics and Astronautics, Inc.,
with permission. Copies of this paper may be made for personal or internal
use, on conditionthat the copier pay the $10.00 per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 0021-8669/03 $10.00 in correspondence with the CCC.

*Reader in Experimental Aerodynamics, Department of Aerospace
Engineering; Doug.Greenwell @bristol.ac.uk.



